Course curriculum
-
1
Course Introduction
-
Introduction to Course
-
-
2
Introduction to Data Science & Analytics
-
Introduction to Data Science 1
-
Types of Analytics
-
Basic Requirement for an Analyst
-
-
3
Python
-
Introduction to Python & Installation
-
Anaconda Installation
-
First Python Program
-
Input & Output
-
Strings
-
Lists
-
Tuples
-
Dictionary
-
Loops (nested, break & continue)
-
Loops (while & for)
-
Functions
-
-
4
Numpy
-
Introduction to NumPy
-
NumPy Array
-
NumPy Functions
-
Array Indexing
-
-
5
Pandas
-
Introduction to Pandas
-
Pandas Series
-
Pandas Dataframes
-
-
6
Visualization using Matplotlib
-
Introduction to Visualization
-
Matplotlib Part 1 (line plot)
-
Matplotlib Part 2 (scatter, bar & pie plots)
-
Sub plot and hist.ENCODING
-
-
7
Visualization using Seaborn
-
Introduction to Seaborn & Functions
-
Seaborn Bar Plot
-
Seaborn Countplot
-
-
8
Data Analysis Case Studies
-
Projecting Appraisals by Evaluating Performance
-
Wine Quality Exploratory Data Analysis
-
-
9
Welcome to machine Learning
-
Introduction to machine learning ,History & Applications
-
-
10
Supervised Ml-(Regression Algorithms)
-
supervised learning
-
Introduction to regression(Linear -Regression)
-
Simple Linear regression Without Library
-
perfomance analysis
-
Linear regression sklearn
-
-
11
Supervised-Classification Algorithms
-
logistic regression sklearn
-
-
12
Aws Machine Learning Certification
-
Recording__10
-
Recording__11
-
Recording__15
-
Recording__17
-
Recording__18
-
Recording__20
-
Recording__21
-
Recording__23
-
Recording__24
-
Recording__25
-